
  
 
 
 

 
1. Introduction  
 
The Clairvoyance team participated in the Filtering Track, 
submitting the maximum number of runs in each of the 
filtering categories:  Adaptive, Batch, and Routing.  We 
had two distinct goals this year: (1) to establish the 
generalizability of our approach to adaptive filtering and 
(2) to experiment with relatively more "radical" approaches 
to batch filtering using ensembles of filters.  Our routing 
runs served principally to establish an internal basis for 
comparisons in performance to adaptive and batch efforts 
and are not discussed in this report. 
 
2.  Adaptive Filtering 
 
In previous TREC work (TREC 7 & 8), we developed an 
approach to adaptive filtering that proved to be robust and 
reasonably effective, as evidenced by the relatively strong 
performance of our systems [1,2].  For TREC 2001 we 
sought to assess the generalizability of the approach, 
given especially the differences this year in (a) the amount 
and nature of the training data and (b) the inherently 
"classification"-oriented (vs. "query"-oriented) task.  
Indeed, additional differences, such as the large numbers 
of expected "hits" in the test set, contributed to the special 
character of this year’s task. 
 
The CLARIT Filtering system is based on core CLARIT 
retrieval technology.  In brief, the CLARIT approach uses 
text structures such as noun phrases, sub-phrases, and 
morphologically normalized words, as features or terms to 
represent text (or passage) or topic (query) content.  
Terms, in turn, are weighted based on document and 
corpus statistics (such as IDF and TF), and additionally 
can have independent coefficients to adjust weights 
according to processing requirements (such as updates). 
Information objects are modeled as vectors in a high-
dimensional vector space; the Euclidean inner product 
gives the distance (or closeness) measure (document 
score) in the space.  The system also has a variety of 
thesaurus (term-extraction) algorithms; these are used to 
identify characterizing terms for a document or set of 
documents (e.g., the set of “relevant” documents 
associated with a topic).  
 
In addition to core processing, our adaptive-filtering 
system has several parameters, including (i) the number 
and type of features used to create a topic profile, (ii) the 
score/threshold setting, (iii) the frequency of setting 
updates (driven by feedback), (iv) the selection and 
number of (new) features added at updates, (v) the 
resetting of score thresholds, and (vi) the number of 
documents retained over time as a basis for modeling the 
topic (historical reference statistics and aging).   
 

For this year’s TREC adaptive filtering task, we used the 
same system that was used for our TREC-8 experiments 
[2].   However, for threshold setting and updating we 
further experimented with our beta-gamma adaptive 
threshold-regulation method. The method selects a 
threshold by interpolating between an “optimal” threshold 
and “zero” threshold for a specified utility function. This 
method can be applied both to training or sample 
document sets, as well as to documents that have been 
returned and judged during actual filtering. 
 
The optimal threshold is the threshold that yields the 
highest utility over the training or accumulated reference 
data.  Operationally, this threshold is determined by using 
the topic profile as a query over the reference (judged) 
documents to score and rank them based on their features 
(terms).  Additionally, based on the utility function for the 
filter, a cumulative utility score is calculated at each rank 
point in ascending order.  Typically, the cumulative utility 
score at each rank point manifests a well-behaved trend: it 
ascends, reaches a peak value, and descends again, 
eventually turning negative (as the remaining documents 
are mostly non-relevant).  The feature score on the 
document at the lowest rank point where the cumulative 
utility score reaches its maximum is taken as the optimal 
threshold.  The zero threshold is determined by the score 
on the document at the highest rank point below the 
optimal threshold that has a cumulative utility of zero or 
less.   
 
The two parameters, beta and gamma, are used to 
determine the feature score—between the optimal 
threshold and the zero threshold—that will be used as the 
actual threshold for the filter.  Beta attempts to account for 
the inherent or systematic (i.e. sampling) bias in optimal 
threshold calculation.  Gamma makes the thresholding 
algorithm sensitive to the number of documents 
processed.  The inverse (1/gamma) expresses the number 
of documents needed to gain reasonable confidence in the 
value of the score threshold (apart from the bias already 
accounted for through beta).  The parameters are 
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determined empirically.   See Figure 1 for the formulae 
that use beta and gamma to calculate a filter-threshold 
score value. 
 
2.1.  Pre-Test Experiments and Calibration 
 
We chose to recalibrate all parameter settings by running 
the system again on the tasks for TREC-8 and TREC-9 
Filtering—the latter task to better approximate the 
classification-oriented features of the Reuters data.  (In 
particular, we did no adaptive-filtering calibrations on any 
Reuters data (1987 or 1996), given our desire to assess 
unbiased system performance.)  Our results for these 
preliminary tasks were quite good (actually better than any 
of the reported results in TREC 8 and equal to the best 
results in TREC 9). 
 
2.2. Test Configuration 

Our approach to testing included the following elements. 

• Preprocessing: All documents, including testing 
documents, training documents, and topic 
descriptions, were pre-indexed using all single nouns, 
single words occurring in noun phrases, and two-word 
noun phrases, as recognized by the CLARIT parser.  

• IDF Statistics: The IDF statistics were collected from 
all the training data. We did not update initial term 
statistics in the process of filtering as our past 
experiments indicate that doing so does not seem to 
have as much impact on the overall filtering 
performance as other factors. 

• Term Weighting and Scoring: We used the BM25 TF 
formula for TF-IDF weighting; the average document 
length was set to 1,000. We used dot product scoring 
for matching documents with profiles. 

• Initial Profile Term Vector: An initial profile vector was 
built from the original topic description and trained 
using the two training examples for each topic by 
adding 20 terms to the original profiles with coefficient 
of 0.1. We used a delivery-ratio estimation method to 
set the initial score threshold and set both gamma 
and beta to 0.1 for use in processing test data. 

• Term Vector Updating: We used Rocchio term vector 
learning, but only positive examples were used to 
expand the profile. A centroid vector accumulator was 
updated whenever a profile accepted a relevant 
document. The top K terms with the highest scores 
were selected from the centroid and added to the 
original profile with a uniform coefficient. The vector 
was updated when a specified number of documents 
had been delivered since the last update or when the 
profile had not been updated for a time interval 
measured by 3,000 documents in the test stream.  

• Threshold Updating: We used the same beta-gamma 
threshold-regulation algorithm as in TREC-8. To 
emphasize recent documents, we discarded any 
documents in the cached set of scored documents for 
each profile that were older than 30,000 documents, 
provided the cached set did not fall below a minimum 
of 1,000 documents. The cached documents included 
both true- and false-positive examples.  At any point 
when a false-positive document scored below a 
“reference threshold”—equal to half of the then-

current real threshold for the profile—the document 
was discarded. 

For the official TREC-2001 submission, we used the best 
parameter settings we discovered in our preliminary 
experiments (on TREC-8 and TREC-9 data). In particular, 
we varied only two parameters—the number of terms 
added at each update and slight differences in threshold 
convergence rates—to create four different submissions, 
with configurations as given in Table 1, optimized for linear 
utility T10U.   
 
2.3. Test Results 
 
Table 2 gives official results for our submitted runs and 
Table 3 gives comparative results.  Our four official runs 
have similar performance. Our results were good from the 
point of view of “conservative” filtering (and delivery of 
information); we achieved an average utility of 222 for our 
best run, with only 30 topics scoring slight negative utility 
(the average of these being –4.37 and the maximum –12).  
However, in the context of the TREC task and the Reuters 
data, this is poor-to-mediocre performance. 
 
2.4. Observations 
 
It seems clear in retrospect that the principal problem in 
the system was the setting of rather high thresholds 
(scores), resulting in the delivery of too few documents, 
especially in the first stages of filtering.   
 
In our system, the initial threshold setting is determined, in 
part, by the expected “delivery ratio” or density of relevant 
documents expected in the stream of data to be 
processed.   In particular, before any filtering can occur, a 
score threshold must be established based on the 
available information about the topic.  Two example 
documents alone do not constitute a sufficiently 
representative sample of documents for effective beta-
gamma regulation.  Instead, we employ a reference 

 CLT10AFA CLT10AFB CLT10AFC CLT10AFD 
Best 3 1 1 2 

> Median 13 17 16 12 
Median 10 9 10 14 

< Median 56 55 55 54 
Worst 2 2 2 2 

Table 3.  Comparative T10SU Results:  Number of Topics 
Scoring at Various Ranks 

Run Ts Added Coeff.  Beta Gamma Interval 
CL01afa 20 0.10 0.10 0.10 2 
CL01afb 200 0.25 0.25 0.05 2 
CL01afc 200 0.25 0.25 0.05 4 
CL01afd 20 0.10 0.10 0.10 4 

 CLT10AFA CLT10AFB CLT10AFC CLT10AFD 

T10U 163.7 160.4 172.9 221.8 

T10SU 0.054 0.051 0.05 0.051 

T10F 0.081 0.075 0.07 0.078 

Table 1. Configurations for Adaptive Filtering Runs  

Table 2. Official Adaptive Filtering Test Results 



  
 
 
 
collection (in this case, the Reuters 1996 training 
documents) as a target corpus.  In practice, we use the 
topic profile (based on terms extracted from the topic 
description and the two example documents) as a query to 
score and rank the reference documents.  Note that we 
examine none of the documents in the reference corpus in 
this process and neither make nor require any information 
about the relevance of individual documents.  We merely 
use the documents of the collection as an empirical test of 
the scoring potential of the topic profile.  After scoring, we 
identify the rank point that corresponds to the expected 
ratio of relevant documents for the collection.  The score 
on that document is used as the initial score threshold for 
the filter.  As a concrete example, if we project the delivery 
ratio to be 1-in-1,000 and we have 10,000 documents in 
the reference collection, we would use the score on the 
document at rank 10 as the initial score for the filter 
threshold. 
 
Given that we calibrated on TREC-8 and TREC-9 tasks, 
where observed delivery ratios average approximately 1-
in-10,000 (TREC-9 = 0.000173 and TREC-8 = 0.00019), 
we began the TREC-2001 task with default assumptions 
of delivery that were far out of line with the actual density 
of topics in the Reuters 1996 Test Collection.  In fact, the 
average density of topics in Reuters is approximately 1-in-
100 (0.0125), nearly two orders of magnitude greater than 
in the collections we have seen in previous TREC tasks. 
 
This discrepancy between our initial expectations (and the 
only ones that we might legitimately make) and the actual 
topic density in Reuters is an immediate source of error in 
our processing.  It might underscore one criticism of the 
Reuters collection—or at least the use of Reuters subject 
categories in that collection—as a test bed for adaptive 
filtering, namely, that such “topics” with such high 
densities are poor representatives of real-world adaptive 
filtering tasks. 
 
This problem in delivery-ratio expectations can also be 
regarded as an indication of a flaw in the user model we 
(as a group) have adopted for TREC adaptive filtering.  In 
that model, we assume that a simple utility function—
balancing the value of true versus false positives, and 
possibly taking into account false negatives—can 
represent the target outcome of a process.  It is clear, 
however, that some expectations of delivery are also 
critical and are very likely a part of any user’s set of 
expectations on filter performance. 
 
Note, it is possible to criticize a system that requires a 
delivery-ratio setting to perform well in contrast to one that 
does not.  Any system that can perform well without such 
a setting is to be preferred to one that cannot—ceteris 
paribus, by Occam’s Razor alone.  However, it is not clear 
that any of the more successful adaptive filtering systems 
that participated in TREC 2001 experiments are such 
systems. In fact, these better systems seem to have 
modeled the delivery ratio quite accurately.  One wonders 
how such a model might have been developed on the 
basis of the topic statement and two sample documents 
alone.  Of course, it is possible that such systems were 
simply initialized with expectations of 1- or 2-in-100 
documents as candidate density.  If so, these were lucky 
choices, indeed.  And, of course, if these were just good 
guesses, it still remains to determine how such good 
guessing might be ensured, in principal, in filtering over 

other streams/collections, such as the ones we saw in 
TREC-8 and TREC-9 tasks, or such as occur in real-world 
applications, where information about expected density of 
a topic in the possibly many data streams that are 
accessed is not available. 
 
2.5. Follow-Up Experiments 
 
Recognizing that our system suffered from the 
inappropriate expectations of density we used, we decided 
to re-run the experiments with explicitly different delivery-
ratio settings.  In particular, we wanted to assess the 
inherent strength (or weakness) of the system without the 
artificial constraint imposed by inappropriate delivery-ratio 
assumptions. 
 
In a set of follow-up experiments, we re-set a variety of 
parameters to accommodate the special conditions of 
Reuters topics.  We used a delivery-ratio expectation of 
2.5% (0.025) to model the relatively frequent occurrence 
of topics.  This was designed to insure that we would 
commence filtering with a lower expected score threshold.  
But given the extraordinarily high ratios of relevant 
documents for many topics, we might well find the lowered 
thresholds to be still too high.  We hypothesize that, when 
we expect high density of a topic in a stream, we should 
expect any small number of sample documents (e.g., 2) to 
be extremely under-representative of the topic and to 
create a high-score bias.  This is because features (terms) 
extracted from such non-representative documents will 
emphasize the distinct characteristics of those documents 
and will tend to select and score highly only the small 
subset of similar documents that share their biases.  In 
such cases, we should depress the lower-bound score 
further, at least until we have achieve a feedback sample 
of sufficient size to insure that topic-representation biases 
are minimized.   
 
As a test of this hypothesis we used lowered beta and 
gamma values to retard the convergence on a stable, high 
(optimal) threshold score.  (Note that a beta = 0 would 
essentially deliver any document that matched on any of 
the features in the profile.)  We also delayed the profile 
updates until we had accumulated sufficient judgments to 
yield nine true positives (along with any false positives that 
also were delivered in the interval).  And, finally, we 
introduced a new parameter, mu, to serve as a coefficient 
on the filter threshold.  For 0 < mu < 1, this effectively 
further lowers the threshold to allow more documents to 
be delivered for judgment. 
 

 CLT10F01 CLT10F02 CLT10F03 CLT10F04 

Del-Ratio 0.025 0.025 0.025 0.025 

Beta 0.15 0.15 0.15 0.15 

Gamma 0.01 0.01 0.005 0.005 

Update 9 9 9 9 

Mu 1.0 0.9 1.0 0.9 

T10U 1716.8 1678.9 1714.9 1679.6 

T10SU 0.1003 0.0843 0.0983 0.0813 

T10F 0.1980 0.2097 0.2057 0.2148 

Table 4.  Results of Post-TREC Adaptive-Filtering 
Experiments 



  
 
 
 
The results of these follow-up experiments, given in Table 
4 for the Runs labeled CLT10F01–04, demonstrate 
immediate, dramatic improvements.  Compared to the 
official runs (Table 2), the improvement in performance is 
nearly 100% for T10SU, 250%+ for T10F, and 
approaching 800% for T10U.  Note that these results do 
not reflect the effect of different term selection (or numbers 
of terms selected), rather derive only from (1) assuming a 
more appropriate delivery ratio, (2) lowering the rate of 
convergence on an “optimal” utility point, (3) postponing 
updates, and (4) further reducing the threshold.   
 
Still, the results are sub-optimal and not at the level of the 
best-performing systems.  We suspect that several factors 
are interacting to limit performance, including the fact that 
our core process is geared to retrieval performance and 
not classification.  Thus, we did not model negative or 
border cases explicitly in developing topic profiles.  In 
addition, the Reuters topics are quite vague and in some 
cases diffuse, in the sense of having a variety of sub-
topics.  We believe that such cases are best treated with 
complex filters, not simple ones, capable of modeling the 
topic structure directly.  We offer more specific thoughts 
on this point in the following section, in our discussion of 
topic-specific optimization strategies in batch filtering.  
 
3.  Batch Filtering 
 
Traditional information retrieval approaches to batch 
filtering have tended to represent a category or topic using 
a single or monolithic filter (model) that is extracted from 
positive examples of the category.  However, both 
empirical and theoretical studies in other fields such as 
machine learning have shown that using multiple models 
or ensembles of models can lead to improved 
performance given some weak assumptions about the 
constituent models [3,4,5,6].  Hansen and Salamon [3] 
proved that, given an ensemble of models in which the 
error rate of each constituent model is better than random 
and where each constituent model makes errors 
completely independent of any other, the expected 
ensemble error decreases monotonically with the number 
of constituent models.   As examples of these theoretical 
claims, empirical studies in the field of machine learning 
have shown that, when weak or unstable learning 
algorithms, such as C4.5, are used in conjunction with 
ensemble techniques, the performance of these 
approaches can be improved significantly [4,8].  
 
The improved performance gained from using ensemble 
approaches can be attributed to avoiding risks that arise 
from using a single model.  These risks can be statistical 
in nature, where more than one statistical solution exists 
(stability).  They can be algorithmic in nature, e.g., with 
high risk of getting stuck in local minima models.  They 
can be representational in nature, e.g., when the space of 
representable models is infinite.  In addition, some 
concepts can be very diverse and can be more accurately 
modeled using multiple models.  Though the use of 
ensemble models is a relatively new, active, and very 
promising field of research in machine learning, very little 
work in information retrieval has incorporated the notion of 
ensemble models. 
 
Our TREC-2001 experiments were designed explicitly to 
explore some of the issues in the use of ensemble filters 
for batch filtering.  The arguments for using complex (non-

unitary) filters are intuitively compelling.  We recognize (a) 
that no single term-selection method works uniformly well 
for all topics and (b) that some topics are best modeled as 
"dispersed"—not based on a single set of features, but 
possibly a family of distinct sub-features.  This would 
seem to suggest that multiple representations (hence, 
multiple filters) are needed.  Thus, we created an 
approach that optimized filters on a topic-by-topic basis 
according to feature extraction method and filter structure.  
In particular, in this heterogeneous approach, filters for 
each topic were unique: each topic's features were derived 
by one of five different feature extraction techniques and 
each was modeled by either (i) a single (monolithic) filter, 
or (ii) a family of four, parallel (multiplexed) filters, or (iii) a 
set of n (cascaded) filters sequenced so that each filter 
after the first considered only the fallout (below-threshold-
scoring) documents of the preceding filter. 
 
3.1 General Description of Ensemble Batch Filtering    
 
Ensemble filtering explores the general idea of 
constructing many weak or focused filters and combining 
these into a single highly accurate filter (using, for 
example, voting) in order to filter or classify an unlabeled 
document.  Ensemble filters can be constructed and 
combined using various techniques that have been 
proposed and empirically demonstrated in the fields of 
machine learning and statistics.  Construction approaches 
vary widely but can generally be placed into three broad 
categories:  data-related methods (such as bagging and 
boosting); representation-based methods (such as 
constructive induction and alternative representations of 
the output space, such as error correcting output codes); 
and approaches that differ based upon the hypothesis 
search strategies employed.  When it comes to 
aggregating the constituent filters of an ensemble, various 
strategies can be used, such as voting strategies as in 
multiplexing, a cascade (or waterfall) aggregation strategy, 
or aggregation strategies that are learned, as in stacked 
generalization [9].  
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Figure 2.  Schematic Representation of a Multiplex 
(Parallel) and Cascade (Sequential) Filter 



  
 
 
 
For TREC 2001, we limited our exploration of ensemble 
filters to multiplex and cascade filters, illustrated 
schematically in Figure 2.  Due to time and system 
limitations, we used simplified versions of the bagging and 
boosting algorithms, both of which generate component 
filters based upon different training data sampling 
procedures, to construct multiplex and cascade filters 
respectively.   
 
A multiplex filter is a filter made up of constituent filters Fi, 
where the multiplex filter accepts the unlabeled document 
(and classifies it as positive) based on some interpretation 
of the independent scoring of each constituent filter Fi.  In 
fact, there are many possible, alternative methods for 
interpreting the score of a set of filters, ranging from some 
simple combination of binary outcomes (e.g., the sum of 
the “votes” of each filter) to a weighted, possibly non-
independent scoring based on the interaction of filters.  In 
our experiments, we chose the simplest approach and 
accepted a document if the document was accepted by 
any one of the constituent filters.  
 
On the other hand, a cascade filter is an ensemble filter 
that consists of an ordered list of filters {F1, …, Fn}, where 
each filter, Fi, consists of two outputs: one corresponding 
to the positive class and the other corresponding to the 
negative or fallout class.  Each constituent filter Fi is linked 
to the fallout class of the filter Fi-1.  An unlabeled document 
is processed by each filter Fi in left-to-right fashion. Should 
any filter accept the document, processing terminates and 
the unlabeled document is accepted by the ensemble 
filter. Otherwise, the subsequent filter Fi+1 processes the 
unlabeled document in a similar fashion. This process 
repeats until either some constituent filter has accepted 
the document or no filter has.  
 

In the case of ensemble filters, we used two different 
construction approaches for our TREC-2001 submitted 
runs (both of which are outlined below): one based upon 
the iterative modeling of fallout examples, which is a 
simplified version of boosting; the other based upon cross-
validation, which is a simplified version of bagging.  We 
used n-fold cross-validation [7] to choose the construction 
and aggregation method and make other representational 
decisions, such as which of several term-extraction 
methods and term counts to use. 
 
3.1.1. Cross-Validation to Construct Monolithic Filters  
 
For ease of presentation, prior to describing ensemble 
filter construction algorithms, we review how cross-
validation was used to construct monolithic filters.  
Monolithic filters served as our baseline submission. The 
presentation is made more concrete by using the TREC-
2001 filtering problem—the Reuters 1996 dataset. 
 
For all submissions, the training corpus was divided into 
four folds.  More specifically, the Reuters 1996 training 
corpus of twelve days was partitioned into four subsets 
denoted by Q1, Q2, Q3, and Q4, where each quarter 
consisted of a non-overlapping sequential sampling of a 
subset of the full training dataset. 
 
Monolithic filters were constructed using either (a) the 
topic descriptions alone, which we subsequently refer to 
as “topic filters,” or (b) the training corpus. To construct 
topic filters, we extracted filter terms from the topic 
descriptions and set thresholds using a beta-gamma 
optimization on three quarters of the data, while the 
unseen quarter was used as a blind test.  This led to a 
utility measure for the test quarter.  This experiment was 
repeated for each quarter, thereby generating four utility 
measures U1, U2, U3, U4.  The average was taken of these 
four utility measures resulting in a utility measure, 
AvgTopicU, for the corresponding topic filter.  
 
On the other hand, when constructing monolithic filters 
from training examples, we examined the results of 
various thesaurus extraction methods and corresponding 
term counts and chose an optimal filter representation 
based upon its cross validation performance.  See Table 5 

Method 
X 

Terms 
CC Roc RocFQ Prob1 Prob2 

10 X X X X X 
25 X X X X X 
30 X    X 
50 X X X X X 
80 X X X X X 
100 X X X X X 
120 X X X X X 
150 X X X X X 
180 X    X 
200 X X X X X 
260 X    X 
300 X X X X X 
340 X    X 
400 X X X X X 
450 X    X 
500 X    X 

Table 5.  Term Count and Extraction Method Combinations  

Figure 3.  Term-Extraction Formulae 
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for a list of all combinations of thesaurus extraction 
methods and term counts that were examined for our 
TREC-2001 submissions.  Note that the label “CC” in the 
Table stands for “CLARIT Classic,” a proprietary term-
extraction method.  Our implementations of the methods 
we refer to as “Rocchio” (“Roc”), “RocchioFQ” (“RocFQ”), 
“Prob1,” and “Prob2,” are given in Figure 3. 
 
In practice, given a training dataset that is partitioned into 
four folds, Q1, Q2, Q3, and Q4 (for the purposes of our 
experiments), this optimization procedure translates into 
taking each combination of thesaurus extraction method E 
and number of terms N and performing the following 
steps: 
 
For each topic T 

1. Repeat steps 2 to 6 for all combinations {E, N} 
listed in Table 5, thereby generating an average 
utility for each combination. 

2. Do thesaurus extraction on Q1+Q2 with the {E, N} 
combination. 

3. Optimize the threshold for T using beta-gamma 
threshold optimization over Q3. 

4. Do a blind test on Q4 generating a utility value U4. 

5. Repeat steps 1 to 4 for alternative combinations of 
Q1, Q2, Q3, Q4, insuring that each database 
subset is used as a blind test at most once. This 
leads to a utility value for each database subset of 
U1, U2, U3, U4. 

6. Set average utility for this combination of {E, N} 
AvgMonoU to Average(U1, U2, U3, U4). 

7. Select the combination {E, N} that provides the 
highest average utility as the optimal means of 
generating a monolithic filter for this topic T. 

 
A utility measure for each fold of the dataset can be 
generated using various combinations of extraction folds 
and optimization folds, however, for our experiments, we 
limited our exploration to the following:  {Q1=3, Q2=4, 
Q3=2, Q4=1; Q1=1, Q2=3, Q3=4, Q4=2; Q1=2, Q2=4, 
Q3=1, Q4=3; Q1=1, Q2=2, Q3=3, Q4=4}, where 1, 2, 3, 
and 4 denote the folds in the training dataset and Qi 
denote the variables used in the above algorithm. In 
deciding between modeling a topic using a monolithic filter 
or a topic filter, we choose the filter with the highest 
average utility scores on the four-fold datasets (i.e., 
AvgMonoU and AvgTopicU).  Prior to running the selected 
filters on the eleven months of test data, the system 
retrains each filter using the entire twelve days of training, 
where the filter thresholds are set using the beta-gamma 
method on linear utility, T10U, over the entire training 
dataset. 
 
3.1.2. Ensemble Filter Construction Algorithms 
 
For our TREC-2001 submissions we developed one 
construction algorithm for each of the two ensemble-filter 
types used. Since the construction algorithm for multiplex 
filters is closely related to that for monolithic filter 
construction (described above), we begin by presenting 
multiplex filter construction.  This algorithm is a simplified 
version of bagging, whereby each filter is constructed from 
a sampled subset of the training data based upon an n-

fold partitioning of the data.  This is in contrast to the more 
commonly used approach for bagging, where each filter is 
constructed from a randomly generated dataset.  In this 
case each filter’s training dataset is generated by 
randomly drawing, with replacement, a specified number 
of examples from the training dataset (typically equal to 
the size of the training data).  We adapted the simpler 
strategy based on n-folds due to time and system 
limitations. 
 
For our current experiments, each topic was modeled 
using a multiplex filter consisting of four component filters 
(unless there was insufficient training data for the topic), 
where each filter was constructed using steps 2 to 6 in the 
algorithm for constructing monolithic filters (above), i.e., 
one filter corresponding to each fold in the training data.  
Unlike the monolithic run (where the final monolithic filters 
were trained on the entire training dataset), the component 
filters in the multiplex filter were trained on two quarters of 
the training data, while the threshold was optimized using 
the beta-gamma method on the third quarter.  
 
Figure 4 gives a screen shot of a multiplex filter that was 
constructed for topic 39 using the CLARIT AW Toolkit. It 
presents a multiplex filter consisting of four component 
filters (each depicted as a node) that were constructed 
using four different subsets of the training dataset.  The 
folds that were used to generate these subsets are 
depicted as nodes in the top portion of the screen shot. 
 
On the other hand, the construction algorithm for cascade 
filters in our TREC2001 submissions is a simplified version 
of boosting (a version of boosting based upon sampling).  
The focus of these methods is to produce a series of 
filters.  The training set used for each filter in the series is 
chosen based on the performance of earlier filters in the 
series.  In boosting, examples that are incorrectly 
classified by previous filters in the series are chosen more 
often to train subsequent filters than examples that were 
correctly classified.  Thus boosting attempts to generate 
filters that are better able to predict examples for which the 
current ensemble’s performance is poor.   
 
For our experiments, we adapted a simplified, rather 
radical, approach to boosting, whereby each example that 
was correctly modeled using the current ensemble was 
not used in the construction of subsequent filters.  As a 
result of this simplification, different stopping criteria were 
required to ensure termination of the algorithm.  These are 
presented subsequently.  
 
The approach to constructing a cascade filter for a topic T 
involves a number of steps and assumes as input three 
datasets D1, D2, and D3, which are respectively used for 
thesaurus extraction, threshold optimization, and blind 
testing.  These datasets could correspond to the following 
folds in the training data: Q1+Q2, Q3, and Q4 respectively. 
In this case the training dataset is split into four 
subsets/folds.  The algorithm consists of two threads:  the 
extraction thread and the threshold setting or optimization 
thread.  Each thread results in the construction of its own 
cascade filter, namely, CExtraction and COpt.  The algorithm is 
presented in stepwise fashion in Figure 6, where the left 
and right hand sides of the figure depict the extraction 
thread and optimization thread respectively.  The 
algorithm is iterative in nature, whereby the first filter in the 
cascade, C1Extraction, is constructed using the positive topic  



  
 
 
 

Figure 4.  Example of a Multiplex Filter for Topic 39, with Performance Illustrated on the Training Corpus 

Figure 5.  Example of a Cascade Filter for Topic 39, with Performance Illustrated on the Training Corpus 
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examples in the extraction dataset D1 (Step 1 in Figure 6). 
This cascade corresponds to the extraction cascade 
CExtraction.  In order to set the threshold for C1Extraction, a 
second cascade filter (i.e., the optimization cascade) is 
constructed.  The first constituent filter in this cascade is 
simply a copy of C1Extraction and is denoted as C1Opt.  To 
avoid clutter in Figure 6, the Extraction and Opt suffixes 
are dropped from the component filters names.  The 
threshold for C1Opt is set using the beta-gamma method 
based upon the linear utility over the optimization dataset 
D2 (Step 2 in Figure 6).  The threshold of the C1Extraction 
filter is set to the optimized threshold of C1Opt.  
Subsequently, the fallout documents from C1 (i.e., positive 
examples from D1 that are rejected by C1Extraction) are used 
to construct the second filter C2Extraction in the cascade, 
provided various continuation conditions are met.  These 
include:  the number of documents in the fallout of 
C1Extraction is greater than a minimum number of 
documents required to construct a filter; the linear utility of 
the C1Opt over the optimization dataset is positive.  The 
above steps of constituent filter extraction and threshold 
optimization (on the fallout of each preceding filter) are 
repeated as long as the continuation conditions are 
satisfied.  Once any continuation conditions fail, all the 
positive outputs of the constituent filters of the extraction 
cascade CExtraction are connected to a union filter (2nd-Last 
Step in Figure 6).  Subsequently this cascade filter is 
applied to the D3 dataset and a utility measure is obtained 
(Last Step in Figure 6).   
 
Figure 5 presents a screen shot of the extraction cascade 
for topic 39 of the Reuters Corpus.  Each filter in the 
cascade, in this figure, is associated with a precision-recall 
curve.  
 
The above procedure is repeated such that each quarter 
of the training dataset serves as a blind test (D3) at most 
once.  This results in a utility measure for each quarter.  
An average of these four values is then taken, resulting in 
an average utility, AvgCascU, for this cascade filter.  This 
value serves as a comparison to other approaches used 
for modeling a topic.  Should the cascade filter be chosen 
(based upon average utility) to model a topic, the cascade 
filter is first re-trained using three quarters of the data for 
extraction (D1), while the fourth quarter is used for 
threshold optimization (D2) and a blind test is carried out 
on the test dataset.   
 
3.2. Test Configuration 
 
We submitted two batch filtering runs: one where each 
topic was represented by a single or monolithic filter 
(CLT10BFA); the other, which we call the “rainbow run” 
(CLT10BFB), where each topic was represented by using 
one (the best) of either a topic, monolithic, multiplex, or 
cascade filter.  Note that for both submission runs, beta 
was set to 0.1 and gamma was set to 0.05. The minimum 
number of documents required for filter construction in 
ensemble filters was set to five.  In both cases, we chose 
the final representation for a topic based on which of the 
alternative choices yielded the highest average cross-
validation utility.   
 
In the construction of cascaded filters, the representation 
of each constituent filter was globally set to the optimally 
determined representation for monolithic filters.  Since the 
average cross-validation utility for both monolithic and 

multiplex filters corresponds to the same value, a further 
evaluation criterion was necessary.  To decide between 
these two approaches, we re-trained a corresponding 
monolithic filter using the entire twelve days of training.  
The beta-gamma method was used to optimize the 
threshold of the resulting monolithic filter.  This re-trained 
filter was subsequently used for retrieval over the twelve 
days of training data and a corresponding global utility was 
calculated.  Similarly, the extracted multiplex filter was 
used to filter documents from the twelve days of training 
and a corresponding global utility calculated.  The 
approach with the highest global utility was chosen as the 
approach to model the associated topic. 
 
As a benchmark for our ensemble approaches, we carried 
out a batch filtering experiment using our traditional 
information retrieval system in conjunction with an 
optimization strategy for identifying the term extraction 
method and term count similar to that outlined above. This 
experiment modeled each topic using a monolithic filter. 
 
3.3. Test Results 
 
Table 6 presents a summary of various batch filtering runs 
in terms of the linear utility (T10U) and normalized linear 
utility (T10SU).  Row one of this table presents the median 
of all submitted runs (from all groups) for TREC-2001 
batch filtering.  The second and third rows summarize the 
results for our two submitted runs.  Our official 
heterogeneous or rainbow submission had an average 
normalized utility of 0.152 and F-utility of 3371.  The 
CLT10BFC run represents the result of our benchmark 
run, which was inadvertently not submitted.  
 
In the context of this year’s task, our Batch results are 
weak.  In follow-up analyses, we determined that some of 
the performance shortfalls were due to processing errors 
under our control.  For example, the test data had become 
corrupted in our translation of the NIST sources into our 
processing format; this led to our losing actual test 
documents, which naturally limited our results in some 
cases.  In another more serious case, we inadvertently 
failed to reset a critical system parameter—one that sets 
an upper bound on the number of documents that are 
considered in any set of documents to be compared to a 
topic profile—when the system moved from training to 
testing data.  In effect, we only considered about one-third 
of the test documents that should have been considered 
as candidates for matching each topic.  This particular 
problem affected both our routing-based baseline run and 
our heterogeneous run.  When we corrected these 
problems and re-ran over the correct version of the testing 
data, we saw immediate improvement in both runs.  In 
particular the heterogeneous approach improved by about 
60% (from 0.152 to 0.239 normalized utility), making it 
essentially indistinguishable from our routing-based 
results.  The CLT10BFA2, CLT10BFB2, and CLT10BFC2 
runs correspond to re-runs of our official submissions and 
our benchmark run, respectively, where both the dataset 
errors and the critical retrieval parameter have been 
corrected.  Here, our benchmark run yields a performance 
of 0.257. 
 
The remainder of Table 6 relates to some post-TREC 
experiments that addressed various problems that 
occurred during the preparation of our final submissions. 



  
 
 
 

These experiments were all conducted on the corrected 
dataset and with properly set retrieval parameters.  
GlobalCascade relates to a run where each topic is 
represented using a cascade filter where the extraction 
method and associated term count for each constituent 
filter in the cascade has a fixed setting.  In particular, all 
constituent filters in the cascade are given the same 
settings as were determined to be optimal for the 
corresponding monolithic filter for the topic (in 
CLT10BFA2).  LocalCascade denotes an experiment 
where each topic is represented using a cascade filter. In 
this case the extraction method and associated term count 
for each constituent filter in the cascade is optimized 
locally.  Multiplex relates to an experiment where each 
filter is represented using a multiplex filter.  
 
3.4. Observations 
 
Our work in batch filtering this year represented an initial 
attempt at the construction of ensemble filters.  Due to 
system limitations and time constraints, our experiments 
were accomplished using simplified versions of bagging 
and boosting algorithms for the construction of multiplex 
and cascade filters respectively.  Even though the 
performance of the current system is only comparable to 
the TREC median, performance should improve with full 
implementations of bagging and boosting algorithms along 
with more comprehensive experimentation.  Current work 
is addressing both of these issues. 
 
Though our proposed approaches to ensemble filters 
model subtopic structure, albeit in a limited fashion, a 
more natural means of identifying and thereby 
representing topic structure can be achieved using 
clustering.  This forms a very important part to our current 
work in this area. 
 
Our analysis suggests that ensemble filters perform better 
than monolithic filters for certain classes of topics.   To 
take advantage of the potential boost in performance that 
would come from topic structuring, any operational system 
would have to be able to predict whether a particular 
filtering task (topic) is best modeled via a monolithic or an 
ensemble filter.   Our hypothesis is that, if there is 
sufficient training data (or relevance judgments in a 
running filter), then multiplex filters will outperform 
monolithic ones.  In such cases, then, the task becomes 
choosing between multiplex and cascade approaches.  

Our hypothesis is that cascading is optimal when the topic 
is vague or diffuse.  Thus, to make a principled decision 
about which approach to select, we need a means of 
diagnosing topic structure.  We have begun work on the 
development of a simple method to accomplish this. 
 
In our report at the TREC 2001 Meeting, we described 
retrospective results that simulated such an ideal choice—
essentially, the best performing method for each topic as 
seen in the homogeneous runs represented by our 
baseline monolithic run (CLT10BFB2), our multiplex run 
(Multiplex), and our cascade run (GlobalCascade)—which 
we called “MadMax.”   A striking feature of the MadMax 
simulation run was the remarkable performance of 
cascade filters in the case of twelve topics, significantly 
exceeding the reported official TREC maximum results.  
We feel obligated to report now that, in work since the time 
of the Meeting, we have not been able to duplicate the 
extraordinary performance of the cascade runs and now 
believe we had corrupted data in reporting those results.  
In repeated experiments with cascade filters—albeit with 
the limited conditions we employed in our original runs—
we have achieved individual topic performance that equals 
or exceeds the reported TREC maximum on six topics; but 
only one of these is significantly better than the maximum.   
 
We continue to believe that successful, robust filtering 
(especially in distinction to classification) will require topic-
specific optimizations, including topic structuring.  We 
have only just begun to explore this problem.  We will 
continue to develop topic-structuring techniques and apply 
them in future TREC experiments. 
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Run Description T10SU T10U 

Median for all Submitted Runs 0.256 N/A 

CLT10BFA 0.147 N/A 
Submitted Results 

CLT10BFB 0.152 3371 

CLT10BFA2 0.237 5834 

CLT10BFB2 0.210 4925 

CLT10BFC 0.234 5453 

CLT10BFC2 0.257 5895 

GlobalCascade 0.220 5323 

LocalCascade 0.195 4882 

Post-TREC Runs 

Multiplex 0.225 5665 

Table 6.  Results of Post-TREC Batch Experiments 
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